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A least-squares method is described for refining the heavy atom parameters of an isomorphous replace- 
ment phase analysis, based upon minimizing the weighted sum of squares of the lack-of-closure errors 
for each derivative in turn, the phase angles having been determined earlier by the use of all derivatives 
at once. Conclusions based on trials with cytochrome C are described. A comparison is made between 
the mean figure of merit and the Kraut and least-squares R factors (RK and RL) as working criteria of 
phase analysis and refinement. It is observed that heavy atoms will refine in position correctly if their 
initial displacement is as much as half the nominal resolution. The behavior of substitution number, 
A, and radial falloff factor, B, under varying conditions is studied. 

Introduction 

After rough heavy atom parameters have been found 
in an isomorphous replacement phase analysis, they 
must be refined prior to the final phase determination. 
Various schemes have been used previously with pro- 
teins, including a correlation function least-squares 
method (Rossmann, 1960), and a trial-and-error least- 
squares method coupled with a method of steepest 
descents, applicable only to centric data (Hart, 1961). 
The Hart  method has worked quite well, and has con- 
tinued to be used since its first application to myo- 
globin in 1959. Its handicap is its inability to handle 
acentric reflections and hence to be applicable to pro- 
teins in three dimensions. 

The purpose of this paper is to describe a method 
of least-squares refinement, to present some experiences 
with the method, and to compare several criteria of 
refinement and of phase determination. The method 

* Contribution No. 3465 from the Gates and Crellin Labor- 
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Fig. 1. Phase triangles on the complex plane, solutions of the 
equation: Fj = Fp + fj. Illustrating lack-of-closure errors, ej, 
from incorrect choices of phases, ¢. 

was first used to refine the relative y coordinates of 
the heavy atoms in sperm whale myoglobin (Dickerson, 
Kendrew & Strandberg, 1961) after the other param- 
eters had been refined by the Hart  method. It has since 
been used independently by Kraut, Sieker, High & 
Freer (1962) with chymotrypsinogen, Muirhead (1966) 
for haemoglobin, and Lipscomb, Coppola, Hartsuck, 
Ludwig, Muirhcad, Searl & Steitz (1966) for carboxy- 
peptidase. 

Principles of refinement 

The quantities known at the start of an isomorphous 
phase analysis are the magnitudes of the structure fac- 
tors of the parent protein, Fp, and the j t h  heavy atom 
derivative, Fj, and the magnitude, J), and phase, c 9, 
of the total scattering contribution of the heavy atom 
group in the j t h  derivative. In terms of the vector 
triangle formed by equation: F j=  F p + f j  on the com- 
plex plane, the quantities known are the lengths of all 
three sides and the orientation of one, f~. The quantity 
wanted is tp, the orientation of side Fp. 

For each derivative there will be two choices of tp 
for which the phase triangle closes and the vector equa- 
tion is satisfied. For all other p's, there will be a lack- 
of-closure error ej(~). (See Fig. 1.) This lack-of-closure 
error is defined as: 

eJc~) -~ [IFjl-  IDK~)I I (1) 

where Djc~)is the length of the third side of the phase 
triangle defined by Fp, 9, J~ and ~j, and is given by: 

D~jc~)= F 2 +f~j + 21FPI IJ~l cos ( ~ - ~ j ) .  (2) 

In a sense, Dj bears the same relationship to the ob- 
served heavy atom derivative structure factor, Fj, as 
the calculated structure factor does to the observed 
structure factor in a conventional small-molecule anal- 
ysis. 

The refinement program is based upon the theory 
of phase analysis derived by Blow & Crick (1959). In 
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their treatment, the unnormalized probability of a 
given phase, ~0, being correct for a particular reflection 
is given by: 

P(~)= exp - 22j \ 2E~ ] ' (3) 

where Ej is the root mean square error in derivative j, 
arising either from data errors or from misinterpreta- 
tion of the heavy atom sites [equations (15) and (16)]. 
If, for each reflection, ~0M is the phase angle for which 
the probability is at a maximum, then the most prob- 
able Fourier map will be that which uses the Fourier 
coefficients: 

{IF~,I exp i~OM}. (4) 

The refinement program to be discussed in this paper 
first determines phases by the Blow-Crick method 
using the initial unrefined heavy atom parameters, and 
then carries out one cycle of full-matrix least-squares 
refinement of the heavy atom parameters of each de- 
rivative with phase angles held fixed. It repeats this 
alternation of phase determination and refinement as 
often as desired and then finishes with a final phase 
cycle and a punched phase deck suitable .for Fourier 
program input. The heavy atom parameters refined are 
x~, y~, z~, Ak and Bk in the expression: 

f j=  Z" A~ exp (-BI¢S z) exp 2rci(hx~+kyk+lz~) (6) 
k 

The second part of the Blow-Crick theory demon- 
strates that a somewhat different set of coefficients will 
produce the map with the least overall root mean 
square error in electron density. This is the map which 
uses as phase vectors, not the unit vector in the direc- 
tion of the most probable phase angle ~0M, but rather 
the vector to the center of gravity of the probability 
function P(e) plotted around a unit radius circle. If the 
polar coordinates of the center of gravity of this prob- 
ability distribution on the complex plane are (m, ~0B), 
then the proper Fourier coefficients for this least error 
map are: 

{mlFPI exp i~B}. (5) 

The radial component, m, acts to weight down the 
contribution of a poorly determined reflection. It has 
been called the 'figure of merit' and used as a criterion 
of the quality of a phase determination. But it is im- 
portant to realize that it is not a measure of the abso- 
lute probability of the phase determination - only of 
its sharpness or unambiguity. The value of P(~) itself 
must be taken into account as well. The individual 
figure of merit measures the precision and not the 
accuracy of a phase determination.* 

* If, for example, a set of phase circles fails to intersect at 
all, but instead has a point of closest approach, or if an other- 
wise well-determined phase is spoiled by an aberrant deriva- 
tive, then there can result a cleanly determined but improbable 
phase, with a high figure of merit but a low maximum proba- 
bility, P(¢M). Conversely, if the heavy atom contributions are 
small and if the derivative circles lie very close to the parent 
circle at all values of ~0, then one can have an ambiguous but 
intrinsically likely phase determination, with low m and high 
P((OM). The greater the lengths of the heavy atom vectors rela- 
tive to the phase circle radii, the sharper will be the intersec- 
tion points of the circles and the higher the figure of merit. 
The greater the errors in phase circle radii on the other hand 
(or errors in intensity data), the greater the measure by which 
circles which would otherwise approach tangentially will fail 
to do so, and the lower will be the P(,) at all values of ~0. 
Since the heavy atom contribution in proteins is usually small 
on the average relative to <Fv), most phase circle sets approach 
the tangential rather than the perpendicular intersection ex- 
treme. Under  these conditions, therefore, the figure of merit tends 
to reflect the quality of the heavy atom substitutions, and the 
intrinsic probability P(e) (or its negative logarithm, the Relative 
Error), the quality of the data. 

or its appropriate space group reduction. (The sum- 
mation, k, is over all the heavy atom sites in the j t h  
derivative, and S =  2 sin 0.) The coefficients Kj and fit 
of the derivative scale factor, K~ =K3" exp (fl~S2), are 
refined as well, the factor K~ being defined as the num- 
ber by which the derivative structure factors Fj- must 
be divided in order to put them on the same relative 
scale as Fp. At present the program to be described 
works only for space groups P 1 and P41, but the adap- 
tation to other space groups is straightforward. 

In phase determination the following quantity is 
minimized to find ~0u: 

#~= Z wj(IFh, M--IDhac~)l) 2 (7) 
J 

for each reflection, h, where w¢= 1/2E~. (Throughout 
this paper, the symbol h as a subscript by itself will 
denote the triplet of Miller indices (h,k,l). The sub- 
script j will denote a particular heavy atom derivative, 
and subscript k will denote a particular heavy atom 
site in the j th  derivative. Subscripts m and n, when used 
with q/, will denote individual members in a sequential 
list of all the parameters which are refined by least 
squares.) In the refinement cycle, an analogous sum 
over all reflections is minimized: 

~ j :  ~ w~(IFh,jl- IDha(~)l) 2 (8) 
h 

for each derivative, j. The desired shifts in the param- 
eters gm (where gm can be atom coordinates, effective 
atomic number Ag, temperature factor Bg or scale fac- 
tor components K~,fl~) are found by solving the set of 
normal equations: 

o r :  

22 arena ~ m  = bn 
m 

[amn] [A~Um] = [bn], (9) 

where the subscripts rn and n denote the parameters 
being refined. The matrix coefficients amn and bn are 
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given by: 

l -D l amn = Z Wh 

bn = Zwn(Fn.:-Dh.,(~o,) [ -3-Dnt~-~ (10) 
h \ 81/)'n ] 

The phase angles are the products of the previous step 
of phase determination, and can be either q~M or gB. 

No provision was made in this particular program 
for the incorporation of anomalous scattering data into 
the analysis, although this could certainly be done 
using the phase probability method of North (North, 
1965; Matthews, 1966). Since the program was de- 
signed for protein structure analysis, where centric re- 
flections occur only in a few zones, it was decided to 
treat all reflections as acentric rather than to use a 
tanh formula (Blow & Crick, 1959) for centric ones. 

Operation of the program 

Phase analysis 
The program as written can accept up to six sites 

in the asymmetric unit in each of a maximum of eight 
heavy atom derivatives. There is the choice of refining 
all parameters, of suppressing temperature factor (Be) 
refinement, or of refining positional coordinates only. 
Fractional shifts can be applied. The options exist of 
printing out individual probabilities, P<,), or punching 
probability profiles across the 72 columns of an IBM 
card. Either ~0M or q~e may be used, although it has 
been found that q~e is preferable in general and of 
course is mandatory for centric reflections, where the 
center of gravity of the two phase solutions symmetric 
about the real number axis must be used. 

The phase determining subprogram calculates P<~> 
at 5 ° intervals around the phase circle, and finds the 
phase angle, q~M, for which the probability is at a max- 
imum. It calculates m and q)n from: 

m cos ~B - -  

Z P(~) cos 
(a 

Z P(~) 

X P(~) sin ~o 
m sin ~o~ = ~ (11) 

E P<~) 
(o 

It then finds the negative of the natural logarithm of 
the probability, P(~), for ~M and q~n, which will be called 
E M A X  and the 'residual error',  abbreviated 'R.E. '" 

8 2 
E M A X =  X J(~_M? 

i 2E~ 

R.E. = X ~(~s) (12) 
j 2E~ " 

As it proceeds, the phase subprogram contributes to 
the buildup of the mean figure of merit, (m> and to 
the mean residual error, M.R.E. It also contributes to 
the buildup of the Kraut  R factor, RK (Kraut  et al., 
1962), defined by: 

RKj = 
22 IIFh,:lobs--IFh,jleal~l 
h 

z Ifh, Jlobs ...... x 100% 
h 

~ Ehol(~B ) 
h 

z IFh,jl 
h 

x 100% (13) 

and to a least-squares R factor, RL, defined by" I 2 } 
~hh WhEhj((aB ) 112 

RL,-  2W-;iFL)I 2 
h 

× 100% (14) 

for each derivative. Since the numerator of R~ is the 
sum of squares of the residuals and is the quantity 
minimized by the least-squares subprogram, RL is the 
true criterion of refinement. The taking of the square 
root in the definition of RL is perhaps unnecessary; 
yet it makes RL of the first power in e, and brings the 
RL values into a range comparable with RK and con- 
ventional R factors.* The program calculates the mean 
discrepancy between ~0M and q~n, and the mean change 
in rpe between the present phase cycle and the previous 
one, <A~0B). 

The r.m.s, estimate of error, Ej, for each derivative 
is initially fed into the phase program as a constant. 
It is usually found initially from: 

E~= <(IAFjI- I)91)Qh (15) 

where AFt= I f j l -  IFPI, and the average is over centric 
reflections only. E~ as defined above is formally equi- 
valent to (e~(~B)) for centric reflections if crossover 
terms (in which Fp and Fj have opposite signs) are 
neglected. 

* The Kraut RK factor is closely related to another phase 
criterion, the centric Re factor of Cullis, Muirhead, Perutz, 
Rossmann & North (1961). For centric reflections only: 

end = IFna-Dnal = IFna- (Fn,v + fnd)l = IAFna-fnal 
= [IAFjI- Ifjln] 

and: 
Z en,j Z IFnal 
h h 

Rc = ~ i}i~'n,il = RK • Z I~FJ,,A " 
h h 

The ratio of mean heavy atom change to mean structure factor 
is useful in any event, and if two of the three quantities RK, 
Rc and X IAFjl/Z IFjl are quoted for centric reflections then 

h h 
the third can be calculated. For good derivatives in structures 
which have been published to date, X IzlFjl/Z IFjl has tended 

h h 
to be around 0.25, Rc around 40% and RK around 10%. 
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As the phase analysis proceeds, new weighting fac- 
tors are built up as" 

E~ = (~(~B))n, (16) 

again with the average taken only over centric reflec- 
tions. These new Ej's are better than the originals 
because of proper treatment of crossover terms. As 
will be seen below, the mean figure of merit is rather 
sensitive to the value of Ej. used. An underestimation 
of the r.m.s, error in the data will lead to a spuriously 
high (m>. 

In summary, the refinement criteria computed by 
the phase subprogram are: (m), M.R.E., (A~oB), and 
R~, R~ and Ej for each derivative. Their use is de- 
scribed below. 

Refinement 
Each derivative, j, is refined independently for one 

cycle, minimizing the gj of equation (8). The reflection 
weighting factor, wn, comes from the just-completed 
phase cycle. In the earlier relative y application to 
myoglobin, an empirical weighting factor equal to the 
square of the figure of merit of the reflection was used. 
In the current program, the weight is taken as being 
the inverse of the r.m.s, lack-of-closureerror over all 
derivatives for the reflection in question: 

wn=l/En, where E2n=(~(,n~>~. (17) 

The least-squares matrices [amn] and [bn] are built 
up in the normal way. A precise definition of Dj, in- 
eluding the scale factor K I is: 

Dj=K){F2e +f~j+2lFPI IJSI cos(~0-~j)}l] 2. (18) 

The partial derivatives of Dj with respect to the scale 
factor constants are trivial. The derivatives with respect 
to all the other parameters of refinement can con- 
veniently be written: 

Ogtn Dj 

, Oa~ 
x (Fv cos ~o + ai) - ~ n  + (Fp sin + b  Obj i ,  

~o J') -8-~-n ~ (19) 

where aj and bi are the real and imaginary parts of 
the heavy atom group structure factor, with their ap- 
propriate space group reductions. If a given parameter 
is not to be refined, then its derivatives are not calcu- 
lated. The program then checks to make sure that the 
row and column in [aran] corresponding to this param- 
eter are all zeros and puts a value of 1.0 in the diagonal 
box common to the row and column. The program 
solves the matrix equations as given in equation (9), 
and applies the shifts, fully or partially. It repeats the 
process for the successive derivatives, then returns 
control to the phase determining subprogram. On the 
last cycle, the phase subprogram exits to the final phase 
output routine rather than to the refinement subpro- 
gram. 

Experimental 

Refinement tests were carried out in two dimensions 
(hkO zone, space group P4x) and in three dimensions, 
for Pt (PtC12-) and Hg (mersalyl)derivatives of horse 
heart cytochrome C, at 4 A resolution. Details have 
been published by Dickerson, Kopka, Varnum & 
Weinzierl (1967a) and Dickerson, Kopka, Borders, 
Varnum, Weinzierl & Margohash (1967b). Out of these 
trials have come some general observations which m a y  
be useful to those trying such a refinement method. 

Single-derivative refinement in centrosymmetric pro- 
jection was never very satisfactory. It is as if the heavy 
atom, having been solely responsible for the sign set 
against which refinement was to take place, then re- 
fused to be influenced by it. In an analogous manner, 
refinement in three dimensions with the phase-deter- 
mining minimum of two derivatives is inconclusive. 
The phases, having been determined so as to be most 
nearly compatible with the starting heavy atom par- 
ameters, then do not exert a strong corrective pressure 
on these parameters. For this reason most of the con- 
clusions of this paper have been based on centric data 
refinement. 

Best results were obtained with double shifts in co- 
ordinates, half to full shifts in A, half shifts in K and 
no refinement of B. Derivative scale factors, when set 
to 1.00, refined rapidly to values near the Kraut scale 
factor of: 

X FpF~ 
K _  h 

x " ( 2 0 )  

h 

Five main points emerged from the refinement trials, 
and can be illustrated by hkO refinement runs using Pt 
and Hg: 

1. The refinement program will pull heavy atoms 
back to their proper positions from displacements as 
much as drain/2 A away, where drain is the resolution 
of the data. 

Fig. 2 shows the shifts in Pt and Hg positions during 
trials using these two derivatives alone and various 
initial displacements. Atoms displaced by 2 A from 
their proper positions refined back without difficulty 
at 4 A resolution ($26), whereas with 3 A displacements 
they failed to do so ($27). The platinum atom oscillated 
in place while the mercury atom moved in the wrong 
direction and then began a long looping spiral which 
might eventually have converged. This failure to refine 
was reflected in lower mean figure of merit, higher Rx 
and RL and substantially larger r.m.s, errors, Ey. During 
refinement the substitution numbers Aj fell steadily as 
if the program, being unable to refine the atoms prop- 
erly, was bent upon wiping them out. This behavior 
is quite typical with incorrect atoms. 

With 2.5 A displacement, Pt refined but Hg did not 
($28). Only when the Hg atom was moved back to 2 A 
from its correct position did both atoms refine prop- 
erly ($29). It appears that with 4 A data there is some- 
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thing like a crest in the refinement plane at 2 A dis- 
placement, beyond which the atoms slip over into false 
minima. This 2 ./k limit is just the point at which the 
atoms move into the wrong half-cycle of a Fourier 
ripple from a reflection at the edge of the data sphere, 

0'18 . 0"20 ~ 0 " 2 2  x - - .  0"24 0"26 

' U  . / U .  ' 
I /~-~ ~ _ "~o 

~ '+ f " ' - - z " ~ °  ~ "  $26 + 

+ i  20 + I0., + + 

+0 '24 + 

5 S 2.___7 
(a) 

0 00  0"02 ~ 0"04 --~ 0"06 0"08 
+0"36 + " - ~ .  x + + 

\ ,--'-~oo \ ' 
./ . /  . 

\ A ~ u " ~ / s 2 9  / 
,\ ,or , /1 

+ ' 0 " 4 2 ~ _ . +  
+ $27~ + 

+0"44 + + Z, / + ,/ + 

/ I0 

+0"46 + + [ + + 

(b) 
Fig. 2. Refinement  of  x and y coordinates of (a) Pt and (b) Hg 

for runs $26, $27, $27A, $28 and $29. Numbers  1, 5 and 10 
alongside trajectories are cycle numbers .  Crosses mark  
intersections of grid lines in 50ths of a cell edge. S tandard  
1 A length is marked.  Con tour  lines are f rom final AF dif- 
ference Fourier  maps,  and have noth ing  to do with the re- 
f inement other than illustrating the goal. 

and is the point at which derivatives of equation (19) 
for these reflections begin to have the wrong sign. With 
a few wrong-sign terms in the summations of equation 
(10), the heavy atom rides around the contour without 
falling into the proper minimum ($28), and with a 
considerable number of wrong signs, the atom wanders 
off in the wrong direction ($27). 

If this half-cycle displacement argument is valid, 
then it should be possible to make $27 refine by cutting 
the data off at 6 A. (Weighting down the outer reflec- 
tions in early stages of least-squares refinement is, of 
course, nothing new in standard small-molecule refine- 
ment.) The results are shown as run $27A. Pt refined 
at once, and Hg followed after an initial swerve along 
the contour. 

2. A and B will not refine well together at 4 A reso- 
lution, but the Wilson-plot values of B are sufficient 
for low resolution phasing. 

A and B for each derivative [equation (6)] were ob- 
tained initially from Wilson plots like Fig.3, using 
initial values of A = 1.0 and B=0.0.  (The first power 
of S was used rather than S z in the exponent of equa- 
tion (6) for reasons described by Dickerson et al. 
(1967b), but this does not affect the conclusions about 
A,B behavior.) If B was varied within a considerable 
range, A was found to refine to a value which best fitted 
a straight line through the center of gravity of the ex- 
perimental points on the Wilson plot. In Fig.3, line 
$26 represents the refined Pt (A,B)  values of (8.00, 
7.46), starting with Wilson-plot values of (8.15, 7.46) 
and keeping B fixed. In run $26A, B was increased to 
12.00 and held fixed while A was set initially to 5.00, 
represented by the lowest dashed line, which does not 
come anywhere near the plotted points. Ten cycles of 
refinement raised A to 11.02 and brought the Wilson- 
plot line up to where it again passed through the cloud 
of data points (S26A-final). Hg simultaneously behaved 
in much the same way. At the same time, the atoms 
were also displaced in x and y by 2 A as well, but they 
refined back immediately, and the added perturbation 
of changes in A and B seemed to have no effect upon 
coordinate refinement. 

When run $26A was restarted, but with B allowed 
to refine ($26B), it was expected that the optimum 
values of $26 would result. This was not the case; A 
and B for both Pt and Hg refined to higher numerical 
values than ever before (12-75 and 14-91 for Pt), and 
the Wilson-plot line, although pivoting about the ex- 
perimental points, changed slope in the wrong sense 
(S26B-final). 

Detailed checks of sign reversals in determinations 
with these final values of A and B showed that the signs 
are much less sensitive to the particular value of B 
than might have been expected, as long as A is refined 
to its corresponding value. Runs $26A and B in their 
final stages had only eleven and sixteen sign reversals 
out of 180 reflections when compared with run $26, 
and in each case only one involved a total change in 
signed figure of merit of greater than 0.50. The majority 
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of changes occurred in weakly determined reflections 
which would have little effect on a weighted, 'best' 
Fourier map. 

The simultaneous refinement of A and B at 4/~ 
resolution was no more successful in three dimensions 
than in two. The most likely explanation is that the 
limited range of S for which data are present at 4/~ 
does not force a proper least-squares convergence on 
the parameters, and that refinement would be much 
better at higher resolution. 

3. The mean figure of merit is a valid criterion of 
phasing quality only if the r.m.s, errors, El, have been 
chosen properly. If this is not so, then almost any (m)  
can be obtained at will. As a check, when Ej's have 
been chosen properly, then the mean relative error 
(M.R.E.) will be equal to 0.5 times the number of de- 
rivatives. 

In a typical two-derivative hkO refinement with Ej's 
chosen as in equation (16), (m)  was 0.46. Doubling 
the Ej's dropped (m)  to 0.26 and halving them raised 
(m)  to 0.59. That these values were in error was indi- 
cated by the fact that the mean residual error per de- 
rivative, M.R.E./n, dropped from 0-56 to 0.14 in the 
first case and rose to 2.18 in the second. Blow (1966) 
has commented that for one derivative, the mean re- 
sidual error should be 0.5 when the Ej's are properly 
chosen: 

1 ~ (e 2) 1 (21) 

The principle has been observed to be generally valid 
for two, three, four or five derivatives as well. With 
Ej's chosen as in equation (16), the mean residual error 
levels off quickly at 0.5 times the number of derivatives. 

As a general rule, whenever mean figures of merit 
are quoted, M.R.E./n should be given as well. If it is 

not close to 0.5, then the error estimates are out of 
line and the mean figure of merit has little orno meaning. 

4. R factors such as RK, RL or the centric Re ,  are 
superior to (m)  in judging the quality of a phase deter- 
mination. 

These R factors are not influenced by improper error 
estimates in the way in which (m)  is. Moreover, the 
mean figure of merit improves as more degrees of 
freedom are added in the form of secondary sites, no 
matter whether these sites are right or wrong, although 
improvement is less for wrong sites than for right ones. 
The R factors, in contrast, are improved by true sec- 
ondary sites and worsened by false ones. Examples of 
this behavior are to be found in Dickerson et aL 
(1967b). 

5. If B's are held constant, then the substitution 
numbers, A~, tend to refine towards zero for false 
heavy atom sites. 

An example involving badly displaced atoms has 
been mentioned earlier. Another, involving a wrong 
secondary site appears in Dickerson et al. (1967b), and 
one involving an entirely erroneous derivative is dis- 
cussed in Dickerson et al. (1967a). 

Operating time 

In its space group P 1 version, with 250 reflections, and 
with three derivatives having a total of 17 sites, the 
program took roughly five minutes per phase/refine- 
ment cycle on the IBM 7090. In space group P41, with 
180 centric reflections, one derivative with one site took 
a little over one minute per cycle on the IBM 7094, 
and five derivatives with a total of nine sites took two 
minutes per cycle. Again in P41, with 1416 predom- 
inantly acentric reflections, two derivatives with one 
site each took approximately seven minutes per cycle. 

tn L <-~.>j 
15" 

I¢ " ~" ~ -  ~ . . .  

_ 4 ~  
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3- " ~ ' ~  " ~ . o ~  o ----- . . .~26 

~ ~ " ~  021  
~-  ~ • ~ S ~ o  ~. .~ 

• Q/ 

"-- ..... S.~6~4,B.in.. 

I 0104 0108 0:12 0116 0120 0:24 0"28 0"32 0"36 0"40 
Fig. 3. Wilson plot of ln{(AF)/(fj}} versus S for the Pt derivative. The number beside each point is the number of reflections 

contributing to the average value. The solid line represents the best straight line through the points, and is the result of refine- 
ment run $26. The broken lines represent initial and final A and B values from runs $26A and $26B. 
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Conclusions 

The myoglobin relative y refinement, the previously 
cited work by others, and the cytochrome C trials de- 
scribed here demonstrate that the phase refinement 
method works well and converges rapidly to the true 
minimum point. In its adjustment of extent of substi- 
tution, A, to compensate for a particular choice of 
radial falloff factor, B, its tendency to refine the A 
value of an incorrect atom towards zero, its refinement 
of positional parameters to the correct location pro- 
vided that the atom was initially within half the nom- 
inal resolution of its proper value, and in the seeming 
independence of coordinate and A,B refinement, the 
program appears to be a 'fail-safe' device - that is, 
one which will correct for reasonable errors or inac- 
curacies in the initial parameters. 

The mean figure of merit seems to be a good relative 
measure of quality of phase determination if, and only 
if, the r.m.s, errors have been chosen correctly. It is 
also unduly affected by the total number of degrees 
of freedom available or parameters to be refined, 
whether in the form of several derivatives or many 
sites per derivative. The two R factors, RK and RL, 
are less sensitive to such factors and are better measures 
of the phase analysis. Both R factors distinguish clearly 
between true and false minor sites, whereas the figure 
of merit behavior is less straightforward. The least- 
squares R factor, RL, being directly related to the 
quantity minimized, is theoretically the better of the 
two criteria to watch, yet in the limited experience of 
the cytochrome work, it and the Kraut R factor behave 
in an identical manner aside from the tendency of Rr~ 
to be quite small for single derivatives. RL is consis- 
tently two to five percentage points lower than RK, 
so it is important to distinguish clearly between them. 
Until their relationships are more clearly understood, 
it would be well to compute and report both. Two of 
the three quantities, RK, Rc and Z" [AF[/Y. IFI, should 
be reported for the cen~ric reflections. 

From a practical standpoint, the time to stop refining 
is the moment at which the change in phase angles 
from one cycle to the next ceases to be significant. The 
phase-changing effect of small positional errors is much 
greater than that of what would appear at first glance 
to be comparable errors in substitution number or 

radial falloff factor. This is because a major error (say 
25%) in A or B will displace the end of the heavy atom 
vector only a short distance on the phase plane, while 
a similar error in x, y or z will cause the heavy atom 
vector to swing wildly around the origin for all but 
the lowest order reflections. The consequence of this 
situation is that there is considerable phase change as 
positional coordinates refine, but that the fine adjust- 
ments of scale factor and substitution number make 
little difference to the phase analysis. At the end of 
refinement of cytochrome C as judged by the leveling 
off of parameter shifts and changes in figure of merit 
and the R factors, the mean change in phase angle from 
one cycle to the next had dropped to a degree or less. 
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